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Reconnection of two antiparallel vortex tubes is studied as a prototypical coherent 
structure interaction to quantify compressibility effects in vorticity dynamics. Direct 
numerical simulations of the Navier-Stokes equations for a perfect gas are carried 
out with initially polytropically related pressure and density fields. For an initial 
Reynolds number (Re = r /v, circulation divided by the kinematic viscosity) of 1O00, 
the pointwise initial maximum Mach number ( M )  is varied from 0.5 to 1.45. At 
M=0.5, not surprisingly, the dynamics are essentially incompressible. As A4 increases, 
the transfer of r starts earlier. For the highest M ,  we find that shocklet formation 
between the two vortex tubes enhances early r transfer due to viscous cross-diffusion 
as well as baroclinic vorticity generation. The reconnection at later times occurs 
primarily due to viscous cross-diffusion for all M .  However, with increasing M ,  
the higher early r transfer reduces the vortices' curvature growth and hence the r 
transfer rate; i.e. for the Re case studied, the reconnection timescale increases with 
M .  With increasing M ,  reduced vortex stretching by weaker 'bridges' decreases the 
peak vorticity at late times. Compressibility effects are significant in countering the 
stretching of the bridges even at late times. Our observations suggest significantly 
altered coherent structure dynamics in turbulent flows, when compressible. 

1. Introduction 
Turbulence is necessarily vortical, and the large-scale, coherent structures observed 

in turbulent shear flows are now well accepted as vortical entities. We believe that 
an understanding of vortex dynamics is crucial for applying the coherent structure 
concept to better understand and optimally control turbulence and associated phe- 
nomena (entrainment and mixing, heat and mass transports, combustion, drag and 
aerodynamic noise). Vortex dynamics may also provide an understanding of the phys- 
ical mechanisms of large-scale/small-scale interaction, cascade and mixing (Melander 
& Hussain 1993). 

Compressibility effects are significant in many technologically relevant flows. How- 
ever, most of our knowledge of coherent structures and vortex dynamics - limited as 
it may be - is based on incompressible flows. Thus, two additional effects must be in- 
vestigated : (i) baroclinic vorticity generation (also possible in stratified incompressible 
flows), and (ii) non-solenoidal velocity, which may produce shocks at sufficiently high 
Mach numbers ( M ) .  Both effects alter the vorticity field and hence vortex interactions. 
Further, recall that by Helmholtz decomposition of the instantaneous velocity field, 
we can formally obtain the rotational and solenoidal velocity (d ), and irrotational and 
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non-solenoidal velocity (u" ). Biot-Savart induction - the cornerstone of incompress- 
ible vortex dynamics - provides u'for a given vorticity field, but in compressible flows 
the total velocity field also includes uc associated with dilatation and compression. 

Since direct numerical simulations (DNS) of the compressible Navier-Stokes equa- 
tions and quantitative experimental measurements in practical (complex) turbulent 
flows, when possible, are not only expensive but also difficult to analyse in terms of 
essential physical mechanisms, studies of idealized configurations are first necessary. 
The present work shows how compressibility affects one vortex interaction - vortex 
reconnection. This interaction is selected because of its expected relevance to energy 
cascade, turbulent mixing, turbulence production, aeroacoustic noise and helicity gen- 
eration (Hussain 1986); also, vortex reconnection is prominent during mixing layer 
transition (Moser & Rogers 1993; Schoppa, Hussain & Metcalfe 1995). A striking 
example of reconnection is the evolution of large-scale aircraft contrails (Crow 1970). 
This same process is expected to occur at all scales in turbulent flows, as supported by 
vortex filament simulations by Siggia (1985), where the initial filaments always evolved 
into a (antiparallel) configuration conducive to viscous reconnection. In fact, studies 
so far of reconnections in interacting vortical structures seem to involve a locally an- 
tiparallel configuration irrespective of initial orientations (see Kida & Takaoka 1987; 
Oshima & Izutzu 1988; Kida, Takaoka & Hussain 1991a; Boratav, Pelz & Zabusky 
1992) - this in magnetic reconnection parlance is called X-type reconnection; 0-type 
vortex reconnection, which does not involve locally antiparallel vortex lines, has also 
been identified in isolated vortex rings with swirl by Virk, Melander & Hussain (1994). 

Vortex reconnection is a three-dimensional, viscous (necessary for incompressible 
flows), topology-altering interaction of two adjacent vortex tubes. The topology is 
altered at points where vortex lines from the adjacent, initially separate, vortices 
intersect (at critical points; see figure la), and the reconnected vortex lines are 
accumulated into bundles orthogonal to the initial vortices. If initially absent, critical 
points in vortex line topology cannot appear in inviscid incompressible flows, so 
reconnection is impossible without viscosity; yet it occurs on a convective rather than 
viscous timescale (Takaki & Hussain 1985; Schatzle 1987; Zabusky & Melander 1989). 
In the Kambe (1983) model of two opposite signed vorticity layers pressed together 
by a constant strain rate, vorticity annihilation occurs on a convective timescale; this 
model may be appropriate very early in the reconnection process. 

Previous studies using experimental, theoretical and numerical approaches have 
considered only incompressible vortex reconnection. The results of each approach are 
briefly reviewed here. 

Experimental studies Two reconnections are apparent in flow visualization studies of 
vortex ring collision (Fohl & Turner 1975; Schatzle 1987), and one reconnection has 
been observed in elliptic jets and elliptic rings (Hussain & Husain 1989). However, 
in an unsteady three-dimensional interaction, a scalar does not necessarily mark 
the evolutionary vortical structures. Frequently, markers are removed from regions 
of intense vortex stretching and accumulated in regions of vorticity compression. 
Thus, dynamically significant features of vortical interactions and evolution are 
frequently missed by flow visualization (Bridges, Husain & Hussain 1989). In fact, 
flow visualization did miss remnants of the initial vortices that were observed in DNS; 
such remnants ('threads') are crucial to cascade (discussed below). Quantitative data 
from the LDA study of vortex reconnection by Schatzle did not show the remnants, 
perhaps because successive reconnection events between two colliding rings had 
sufficient dispersion from event to event to smear the ensemble average. DNS by Kida 
et al. (19914 conclusively reveals threads for various angles of collision of vortex rings. 
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Theoretical studies Takaki & Hussain (1985) constructed a highly idealized model 
based on symmetry and conservation of fluid impulse. This model is valid only near 
the interaction region since it uses polynomial expansions to express the local velocity 
field. Although this study was limited to symmetric interactions across the critical 
point, it was later seen that this restriction does not alter the essential dynamics 
(Melander & Hussain 1988, referred to here in as MH 1988; see also Melander & 
Hussain 1989, 1990). Since the interacting vortices as well as the reconnected vortices 
were constrained to lie in a plane, this model leads to ‘recoil’ vortex rings (not seen 
in simulations) to preserve impulse. The impulse in an actual flow is preserved by the 
self-induced velocity of the vortex tubes due to curvature. Thus, three-dimensionality 
is an essential feature of reconnection. 

Saffman (1990) has proposed a phenomenological model, which relies on an axial 
pressure gradient within the interacting rectilinear vortex tubes to cause reconnection. 
However, the pressure gradient in the interaction region is likely to be also affected by 
the strong adjacent reconnected vortices. Also, the proposed phenomenology assumes 
that reconnected vortex lines lie in the same plane as the interacting vortices and 
fails to consider the most dominant aspect of vortex reconnection observed in DNS, 
namely ‘bridges’ (discussed below). Moreover, this model assumes that the strain rate 
is constant in the interaction region, contrary to the DNS result that the strain rate in 
the interaction region varies strongly in both space and time (MH 1988; Meiron et al. 
1989; Kida et al. 1991~). Hence, comparisons of predictions of Saffman’s model with 
DNS results (such as by Boratav et al. 1992 and Shelley, Meiron & Orszag 1993) show 
significant differences. The increase and eventual decay in the axial strain rate in the 
model, unlike its saturation in DNS (see Shelley et al.), is probably because the flow 
induced by the bridges is neglected. This bridge induction is a significant feature of the 
reconnection mechanism and may also cause the peak in vorticity to occur at earlier 
times as Re increases, as observed in DNS (Kerr & Hussain 1989). Saffman’s model 
predicts peak vorticity at later times as Re increases; see Shelley et al. and Boratav 
et al. Clearly, realistic theoretical modelling of vortex reconnection is still lacking. 

Numerical studies DNS has the advantage that it can provide details of the vorticity 
field and vortex line topology, which are not yet accessible through state-of-the-art 
measurement technology (see Meng & Hussain 1995). Indeed, DNS has provided a 
rich knowledge base for the physics of reconnection, albeit in idealized configurations. 
However, early simulations with complicated initial vorticity configurations (Kida & 
Takaoka 1987; Zabusky & Melander 1989) were difficult to interpret and, as a 
result, yielded little insight into the mechanism. Meiron et al.’s (1989) results were 
complicated by the sheath of negative vorticity surrounding the positive core in their 
self-annihilating ‘zero circulation’ vortices. Ashurst & Meiron (1987) considered the 
collision of two vortex rings and visualized only the first reconnection. Kida et al. 
(1989, 1991~) simulated the collision of two vortex rings and delineated the details of 
the two reconnections prominent in flow visualization by Fohl & Turner (1975). 

MH (1988) used two antiparallel, sinusoidally perturbed vortex tubes as their initial 
condition, as shown in figure l(b) (the perturbation was only to ensure sustained 
collision of the tubes), and analysed the intrinsic reconnection mechanism by first 
identifying three stages: inviscid advection, bridging, and threading. During inviscid 
aduection, the vortices approach each other by self-induction, and their cores deform. 
Even though negligible circulation is transferred to the dividing plane (q; X , Z -  
plane in figure lb) at this stage ( i.e. essentially inviscid evolution), vortex filament 
simulations (such as by Siggia 1985) are not an adequate model of even the first phase 
because they ignore core deformation. This deformation will affect core dynamics 



50 D. Virk, F. Hussain and R. M. Kerr 

XC 

FIGURE 1 (a-c). For caption see facing page. 

as well as local induction and hence is expected to significantly influence the rate of 
reconnection. In the crucial second stage, significant circulation is transferred from 
n, (symmetric plane X, Y in figure lb) to nd, and bridges are formed as a result 
of a complex combination of three effects: mutual induction that increases vortex 
curvature and self-induction that sustains collision of the two initial vortices; vorticity 
stretching by parts of the vortex away from the interaction region; and viscous cross- 
diffusion which involves topological transformation equivalent to 'cut-and-connect' 
of vortex lines. The third stage, threading, occurs when the flow induced by bridges 
reverses the curvature of the initial vortices, thereby causing the vortices to move apart 
by self-induction, arresting the reconnection process. Thus, unreconnected remnants 
of the initial vortices remain as threads. 

The existence of threads remains controversial, primarily because they have not 
been observed in flow visualization of vortex ring collision. However, their existence 
can be inferred from the elliptic jet data of Hussain & Husain (1989) and is clear 
in the flow visualizations of vortex rings near an inclined wall by Lim (1989). 
Threads are crucial for turbulence cascade since they may undergo a second curvature 
reversal leading to a second stage of smaller-scale reconnection and thus one should 
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FIGURE 1. (a )  Schematic of reconnection. (b) Initial vorticity distribution. Only the part of the 
vortices with positive X, Y and Z is actually computed. Plane X, Y is the symmetric plane R, and 
the plane X,Z is dividing plane n d .  (c )  The evolution of circulation in R, for vortex reconnection 
simulations with different initial conditions. 0, PIC (case A, Mmx(t=O)=0.507); 0, CIC (P=1.56, 
M,,(t=0)=1.442); A, CDIC (P=3.5, Mmx(t=0)=1.500); n, PIC (Case E, Mm(t=0)=1.438); 0 are 
incompressible data from MH (1988). (d) The P and p fields in n, with various initial conditions 
from (c). At t=0.5, the contour levels (minimum, maximum) with constant increment are: CIC P 
(0.24, 2.78), p (0.286, 1.52); CDIC P (0.75, 3.84), p (0.528, 1.257); PIC (case E) P (0.57, 2.29), p 
(0.34, 1.1). Chain-dotted lines are vorticity contours. A shocklet appears as large P and p gradients 
marked A. 
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expect subsequent reconnections (MH 1988). Successive reconnections appear to 
be a physical mechanism of cascade. Thus, in spite of some conflicting views 
(e.g. concerning existence of threads and location of bridging), DNS has provided 
considerable insight into incompressible vortex reconnection, and revealed bridging 
as the essential mechanism in the antiparallel configuration; similar details were also 
obtained by Kida et al. (1991~).  

In the next section we briefly present the governing equations and the numerical 
method of solution. Section 3 contains a discussion of the initial conditions for 
vorticity, pressure ( P )  and density ( p )  fields. Differences in the evolution of low- 
M (essentially incompressible) and high-A4 reconnection are discussed in §4. The 
detailed mechanisms by which compressibility affects reconnection are discussed in 
$5;  concluding remarks are presented in 96. 

D. Virk, F. Hussain and R. M .  Kerr 

2. Equations and numerical method 
We solve the compressible Navier-Stokes equations with specific volume V ( =  l/p), 

velocity ui, and pressure P as the primary variables. In non-dimensional form, the 
governing equations for mass, momentum, and energy are 

-- - - u j a j v  + v ( a j u j ) ,  av 
at 

The fluid is assumed to be a perfect gas, i.e. P' = R T * / V '  with zero bulk viscosity. 
In (1)+3), Dij = i(d,ui + diuj), V E V'/V, ,  ui = ui'/V, and P = P'yV,/cOz, where 
c, is the reference sound speed and y = C,/C,  is the ratio of specific heats. The 
quantities with superscript * are dimensional. Using scales V, = c, = U ,  = L = 1 
for corresponding quantities and K ,  and p, as fluid properties far away from the 
vortex core, we get the non-dimensional parameters: Prandtl number P r  3 ~.&,/Ko, 

Reynolds number Re, = V , L / V , ~ ,  and Mach number M ,  = U,/c ,  = 1. Thus, in 
a simulation, local M = M , ~ U ~ / ( P V ) ' / ~  and we define Re = r / ( p o V o ) ,  where r is the 
circulation in 7c, (see figure 1). 

In the pseudo-spectral simulation code employed here, viscosity p 3 p * / b  and 
thermal conductivity K = K * / K ~  may be prescribed functions of temperature ( T  = 
T */  To) ; however, for most of the simulations reported here we assume temperature- 
independent properties. This assumption significantly reduces the computation time 
and is justified in $5.4. Appropriate transforms accounting for boundary conditions 
are used to compute derivatives of the primary variables in wavenumber space and 
calculate the nonlinear terms in physical space. Because of the symmetries inherent 
in the initial conditions (figure lb), only one half of a vortex is actually simulated. 
Thus, we use Fourier series in X for all variables, and cosine transforms in Y and 2 
for V ,  P and velocity u1 along X. For u2, the velocity along Y ,  we use sine transform 
in Y and cosine transform in 2 ;  for u3, we use cosine transform in Y and sine in 2. 
For timestepping, Wray's compact storage explicit scheme for the third-order Runge- 
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Kutta method is used (Wray 1987). The Courant number ( (u + c)moxAt/Ax, where u 
is fluid velocity and c is local sound speed) was 0.45 for all simulations reported here. 

The choice of V ,  u and P as primary variables is motivated by the fact that it leads 
to only quadratic nonlinearities in the governing equations, whose aliasing errors can 
be removed by the 2/3 truncation procedure. Moreover, unlike formulations in terms 
of conservative variables ( e.g. Feiereisen, Reynolds & Ferziger 1981), this choice 
of primary variables does not require any special splitting of the advection term 
in the momentum balance equation to maintain energy conservation. The energy 
variation (AE) over an entire simulation (approximately 12 turnover times for a fluid 
particle at the boundary of the initial compact vortex tube) was A E / E  = where 
E = puiui/2 + P / ( y ( y  - 1)Mz) is the total energy. 

To validate the code, we simulated the formation and propagation of a shock from 
a localized high pressure region as in Passot & Pouquet (1987). In these simulations, 
a fourth-order polynomial and at least ten grid points were necessary to approximate 
the initial pressure jump to suppress Gibbs phenomenon and obtain results within 1% 
of analytical predictions. We have also reproduced the two-dimensional compressible 
homogeneous turbulence results reported by Lee, Lele & Moin (1991) (see Virk & 
Hussain 1993; Virk 1993). In addition, excellent agreement was found between our 
low-M simulations and the incompressible vortex reconnection results reported by 
MH (1988) and obtained via an independently written code, as shown in $4. 

3. Initial velocity field 
The antiparallel configuration used by MH (1988) is selected for the present study 

because it does not involve the complicated 'fingering' phenomenon observed by 
Boratav et al. (1992); we feel that this fingering masked the essential physics in the 
simulations of Kida & Takaoka (1987) and Zabusky & Melander (1989). Fingering 
might occur in vortices before reconnection in a turbulent flow, but is not an essential 
aspect of the reconnection mechanism (Boratav et al.). 

3.1. Initial velocity Jield 
The initial vorticity distribution in the core was compact Gaussian as used in MH 
(1988) : 

o(x) = a(r) ( -a ,  sin(ct) sin(2)P + a, cos(cr) sin(Z)jj + i), (4) 

where 

r2 = ( X  - X, - a, sin(a) COS(Z))~  + ( Y  - Y, + a, cos(ct) COS(Z))~ 

with X, + a, sin(a) and Y, - a, cos(a) being the centre of the vortex in the 2 = 0 
plane (see figure lb). The vorticity profile is compact only initially since viscosity 
ensures non-zero vorticity outside the initial compact vorticity region at any t > 0. 
We choose a perturbation amplitude Q, = 0.2 and inclination angle a = 60" (the 
angle of the vortex axis, projected on the X, Y-plane, with the Y-axis). Initially in 
ns, there is no gap between the two cores (i.e. vorticity-containing regions). Several 
low resolution runs showed that the sole effect of initially having a gap between the 
vortices, as in MH (1988), is a slight delay in the collision of two vortices, and hence 
in initiation of the circulation transfer, with no change in the essential dynamics. 
The sinusoidal perturbation in the initial state is only to ensure collision of the two 

and f ( V )  = exP[-KV-' eXPU/(V-1))l7 K = ; exp(2)~og(2), 
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antiparallel vortices to initiate reconnection and does not influence the essential local 
physics of the phenomenon. Using the above solenoidal vorticity field, we obtain the 
initial velocity field from the vector identity for a solenoidal velocity field, 

v2u = -v x 0. ( 5 )  

Since there is no consistent way to specify a priori the velocity divergence field, a 
solenoidal velocity field is initialized. 

3.2. Initial pressure and specijic volume fields 

The initial polytropically related P and V fields were determined from the equations 

Equation (6b) is obtained by imposing, for an inviscid flow, zero dilatation rate 
(d(V . u)/dt = 0) in the initially incompressible field. After substituting (6a) in (6b), 
the resulting Poisson equation for V is solved directly; we call this the polytropic 
initial condition (PIC; Virk & Hussain 1993). For the present simulations, we used 
b = y ,  which leads to an initially homentropic flow field. The constant a determines 
ambient pressure, hence the speed of sound, and was used to vary M. The PIC 
was chosen after comparison with two other initial conditions: (i) constant P and 
V (constant initial condition CIC), and (ii) P determined from (6b) by imposing 
zero rate of change of divergence for constant V (constant density initial condition 
CDIC). CIC was used by Lee et al. (1991), and CDIC was used by Feiereisen et al. 
( 198 1) for compressible turbulence simulations. Vortex reconnection dynamics with 
CDIC were nearly incompressible even at high M, and strong initial transients were 
observed with CIC (Virk & Hussain). This is clearly illustrated by the evolution of rs 
(circulation in K,) for the three initial conditions (figure lc). Simulation with CDIC 
shows some generation of Ts (due to baroclinic effects) at early time, but for t > 1 
the evolution, despite high M, is surprisingly similar to that in the incompressible 
case (MH 1988). With CIC, note the drops in T, around t=1.8, 2.5 and 3.5. These 
are due to wave-vortex interactions, where a pressure wave is created by the initially 
unbalanced centrifugal force in the vortex; see figure l ( d )  where the wave is clear in 
the contours of P and p. Owing to periodic boundary conditions, this wave interacts 
with the vortices at later times. In contrast, simulation with PIC shows no such 
sudden Ts changes since the centrifugal force in the vortex is initially balanced by 
the radial pressure gradient. We obtain 'clean' simulations with PIC which shows 
compressibility effects not observed with CDIC. Additionally, based on entropy 
considerations, experimental observations of an almost polytropic relation between 
P and V in compressible vortices (Howard & Matthews 1956; Mandella 1987), 
and analysis using low-M asymptotic theories of the compressible Navier-Stokes 
equations by Erlebacher et al. (1990) and Zank & Matthaeus (1991), PIC appears 
more appropriate to study compressible vortex dynamics (see Virk & Hussain 1993). 

In table 1, the parameters for the simulations reported in this paper are listed 
along with the letters used for identification in the discussion. We use the same 
non-dimensionalization for time as in MH (1988), i.e. t = t'o(t' = 0)/20, in order to 
allow direct comparison with their incompressible simulation. 
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Case 
A 
B 
C 
D 
E 
F 
G 

M-(t = 0) 
0.50 
0.95 
1.14 
1.28 
1.45 
1.45 
1.45 

Remarks 
R e =  lo00 
R e =  lo00 
Re = 1000 
Re = lo00 
R e =  lo00 

Re = 1O00, p / p o  = ( T/T0)0.76 
Re = 1500 

TABLE 1. Initial conditions. V,=l.O, and P r  = 0.67 for all simulations. Domain was (936x43 x4.8)rU, 
where r ,  is core radius. Resolution was 128 x 65 x 65, except for case G which had resolution 
256 x 65 x 65. The evolution of cases C and E was also calculated up to t = 3 with resolution 
512 x 65 x 65; except for suppression of the Gibbs phenomenon when the shocklet occurs, the 
dynamics remained the same. For all cases Q, = 0.2, Y, = ru + 0.1. 

4. Observations 
4.1. Vorticity isosurfaces 

The 101 isosurfaces for cases A (M = 0.5) and E (M = 1.45) are shown in figure 
2. Note that these vorticity surfaces are quite different from vortex surfaces because 
vortex lines can cross the former. Nevertheless, vorticity isosurfaces adequately mimic 
the topology of vortex surfaces in this simple configuration and are much easier to 
compute (also see $5.3). The 101 isosurfaces in these two cases at early times are 
similar to the incompressible case (MH 1988). For case A, the entire evolution is 
virtually identical to that observed for incompressible vortex reconnection (MH 1988). 
In particular, note the strong bridges already clear at t = 4.1. In addition, the threads 
are clear at t = 6.0 and have undergone curvature reversal as for incompressible 
evolution (MH 1988). At high M, the bridges are weak even at t = 4.5. The threads 
are much stronger at t = 6.0, having no curvature reversal. The circulations in n, 
and 7(d for case E at t = 6.0 are the same as in case A at t = 4.1. However, the 
corresponding structure of the vortices is very different for the two cases. Namely, 
the bridges are farther apart (see $5.2) in case E than in case A, and the axes of 
interacting vortices lie in an X =constant plane in case E, in contrast to the elevated 
interaction region (relative to vortex legs) for case A. These observations suggest that 
compressibility effects delay and suppress reconnection. 

4.2. Vorticity in R, and Kd cross-sections 

To illustrate the vorticity evolution in the interaction region, we show the time 
evolution of vorticity contours in n, and nd in figures 3 and 4(a) respectively, for 
cases A and E. In figure 3, note that even though vorticity contours are only slightly 
deformed in the ‘inviscid advection’ stage ( t  < 2.0) for low M, those for high M 
are tilted towards q in front of the vortex dipole formed in R,. This is due to 
the formation of a shocklet (see $5). At times t = 3.6 and 4.5, it is clear that the 
characteristic head-tail structure in n, observed by MH (1988) and Kida et al. (1991a) 
occurs in case A, but not in case E. Since the deformation of a vortex dipole into 
a head-tail structure is strongly dependent on the straining flow in the dipole plane 
(Buntine & Pullin 1987; Kida, Takaoka & Hussain 1991b), this indicates that such 
a straining flow is reduced as M increases; the reduction in strain rate is a result 
of slower growth of the sinusoidal perturbation (see $5). Finally, we note that the 
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FIGURE 2. Isovorticity magnitude surfaces at 25% level of initial Iwlmax. (a) low M (case A), 
(b)  high M (case E). Circulation in n, in case E at t=6.0 is the same as in case A at t=4.1. 
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FIGURE 3. o, in R, for cases A (a)  and E (b) .  Every fourth grid line is shown. 
Minimum contour level is 1.0 and increment is 2.0. 

remnants of the original vortex core in case E have higher 101 and circulation (see 
$4.3) at t = 6.0, because of reduced reconnection (or circulation transfer) at higher M. 

The vorticity contours in nd show that the bridges have comparable r in both cases 
A and E by t = 3.0 (figure 4a). However, the bridge in case E is farther away from ns. 
Since in both cases the self-induced motion of the bridges is directed away from zs, 
we may infer that the bridging starts at an earlier time at high M (see figure 8e). This 
inference is supported by the results discussed in w.3. At later times, we find that the 
bridges are stronger and have a more non-concentric vorticity distribution for low 
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FIGURE 4. (a) oy in nd for cases A (i) and E (ii). Every fourth grid line is shown. Minimum contour 
level and the increment are 1. (b) Two schematics of vortex tubes, in the quadrant simulated, see 
figure l(b), to illustrate the cause and effect of non-concentric vorticity distribution in I d .  The first 
schematic shows twisting of vortex lines due to different vorticity magnitudes in nd and the farthest 
computational plane parallel to n,. The second schematic shows the distortion of vorticity contours 
in z d  to non-concentric distribution as a result of axial flow (due to vortex h e  twisting) and vortex 
stretching (by threads). 

M. The sharp gradient in vorticity away from n, after t = 4.5 for case A has been 
shown by Melander & Hussain (1990) to be due to stretching caused by the threads. 

Local increases in IwI due to vortex stretching by the threads play an important 
role in the bridges’ internal dynamics. Consider a vortex tube representing a bridge 
as shown in figure 4(b). At locations where 101 is larger the vortex lines rotate faster, 
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thereby leading to overall twisting of vortex lines in the bridge. In turn, twisted 
vortex lines produce an axial flow along the vortex core, causing local vortex line 
compression and hence local reduction of IwI (see $5.3). The radial vorticity gradient 
is larger in nd where the vortex stretching due to the threads dominates and is smaller 
where the axial flow causes vortex line compression, thereby producing non-concentric 
vorticity contours. Based on these arguments, the nearly concentric vorticity contours 
at late times for case E are surprising because the threads are stronger than in case 
A and hence are expected to cause greater vortex stretching. Locally higher 101 
will cause greater twisting of vortex lines (i.e. stronger axial flow) and, consequently, 
more non-concentric vorticity contours. (Viscous diffusion would also tend to make 
vortices concentric. Since Re as well as the timescale of the simulations in both cases 
A and E are the same, viscous diffusion cannot be the primary cause of concentric 
contours at high M). Therefore, this observation suggests that compressibility effects 
are important even at late times and counter the local bridge stretching by the threads 
(see 95.3). 

4.3. Circulation transfer 
A quantitative measure of vortex reconnection is the transfer of r from R, to Rd. In 
the following, we denote r in R, by T, and that in nd by rd. Figure 5(a) displays the 
evolution of T, and rd for all cases in table 1. The circulation transfer for the lowest 
M (case A) closely corresponds to the incompressible results of MH (1988). Initially 
in case A, Ts remains constant as the two interacting vortices approach ad, followed 
by reconnection leading to a rapid decrease in T,. This is followed by viscous decay 
of the threads at late times; during this time the circulation transfer rate is much 
slower since the threads’ self-induced motion separates them. 

As M increases, we note that there is a rapid transfer of T at around t = 0.6, with 
a transfer rate which increases with M. Then, the T transfer is reduced considerably 
and, for increasing M, is followed by delayed, increasingly slower transfer in the 
bridging phase. These observations are clear from the evolution of dT/dt (in both 
n, and Rd)  shown in figure 5(b), where the first peak in transfer rate increases and 
the second peak decreases and is delayed for increasing M .  In summary, we observe 
that with increasing compressibility effects, reconnection is initiated earlier (the early 
dT/dt peak is due to a shocklet, discussed in $5.1) and is suppressed at later times in 
the bridging phase; i.e. the T transfer rate is slower, reaching a smaller maximum at 
a later time as M increases. 

4.4. Peak vorticity in R, and ad 

In figure 6(a), we show the evolution of peak vorticity in n, for cases A-G. The 
fluctuations in the curves are due to the discrete grid, so that when the actual 
peak falls between grid points we observe a slight decrease. Unlike the incompressible 
simulations, we note that there are two peaks in vorticity evolution in n, for sufficiently 
high M. However, as we discuss below, only the second peak is due to vortex 
stretching. The first peak is caused by a shocklet, entirely a compressibility effect (see 
$5.1.2). We also observe that as M increases, the second peak in vorticity is lower and 
is reached at a later time. 

As Siggia (1985) observed an antiparallel configuration in vortex filament simula- 
tions just before severe vortex stretching ensued, antiparallel vortex tubes have been 
used to study the conjectured consequent finite-time singularity of the incompressible 
Navier-Stokes equations (Kerr & Hussain 1989; Pumir & Siggia 1990; Shelley et al. 
1993). Since we also use an antiparallel configuration, the above results suggest 
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FIGURE 5. (a) Evolution of rE and rd normalized by initial Ts.  ( b )  -dT,/dt (=dTd/dt). Symbols 
are: 0, case A; A, case B, 0, case C; 0 ,  case D; x, case E; V, case F; V, case G. 0, incompressible 
data from MH (1988). 
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FIGURE 6. (a) Evolution of up.& in II, normalized by its initial value. (b) Evolution of wpd in IId 

normalized by the initial value of wwd in n,. Symbols are the same as in figure 5. 

suppression of this singularity, if it exists, by compressibility effects. The present 
results are, however, not conclusive as the peak vorticity increases with increasing 
Re for a given M (see figure 6a, cases E and G). In addition, we used lower Re in 
the compressible cases owing to the higher resolution required to resolve the shocklet 
(see $5.1). 
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The early evolution ( t  c 3.0) of peak vorticity in nd shows that the vorticity first 
increases at a faster rate as M increases (figure 6b), consistent with the early bridging 
inferred from the r evolution. However, it reaches a lower maximum value and is 
delayed as M increases. This observation may appear inconsistent with the fact that 
the threads are much stronger in case E (see figure 2) and hence capable of causing 
higher vortex stretching in the bridges. However, the reduced peak vorticity in bridges 
at higher M is due to compressibility effects (see 55.3). 

5. Compressibility effects 
5.1. Shocklet formation and its efects 

In order to understand the reason for early bridging and circulation transfer for high 
M ,  we consider motion of the vortex dipole in II, in a reference frame moving with 
the dipole. Such a flow field has two stagnation points (SF and S R ) .  In compressible 
simulations, we expect compression to occur as shown schematically in figure 7(a). 
The velocity divergence at t = 0.1 in case E, plotted in figure 7(b), is consistent with 
this expectation. If the velocity between the vortices is supersonic and decreases to 
subsonic (this is likely to occur near stagnation points seen in the moving reference 
frame), a shocklet can form where such a transition occurs. In figure 7(c) we show 
M in a laboratory reference frame, so the stagnation points are not seen, but the 
transition from supersonic to subsonic flow is clear. 

A shocklet is characterized by a thin region of high negative dilatation (ie. fluid 
compression). In figure 8(a), we show superimposed three-dimensional surface plots 
of V u = -5.0 and 1 0 )  = 0.05 at t=0.5 ( 1 0 1 ~ ~  = 11.17 at this time). Dashed lines 
show P contours in n, and nd; in ns, minimum P occurs near the vortex centre as 
expected, while in nd, minimum P occurs before the shocklet (small X). In figure 8(b)  
we show cross-sections of this negative dilatation region with superimposed vorticity 
contours in ns. It is clear that the shocklet (isodilatation surface) is curved and has 
non-uniform strength along both the Z- and Y -directions. This non-uniformity in 
shocklet strength is important for the baroclinically generated low-level vorticity seen 
behind (i.e. on top at larger X) the shocklet (see 85.1.2). Figures 8(c) and 8(d)  show 
P ( p  is similar, not shown) and kinetic energy dissipation, respectively, in n, at this 
time. Note the characteristic high gradient of P and large dissipation in the shocklet. 
In figure 8(e),  we show kinetic energy dissipation and overlaid vorticity contours in 
nd. Even at this early time, the presence of bridges is clear, indicating an earlier start 
of reconnection in case E. 

To establish that the negative dilatation region observed in figure 8(a,b) is a 
shocklet, we compared the values of P ,  p and u on each side of this region along the 
X-axis (figure 9) with those expected from Rankine-Hugoniot relations for a normal 
shock (e.g. Thompson 1984, p.323). We use subscript ‘1’ to denote the direction 
where fluid enters (before) the shocklet and ‘2’ to denote where it exits (after), and 
define w1 = -(ul - b) - nl, w2 = (u2 - b) n2, where b is the shocklet velocity and nl 
and n2 are outward normals, and MI, = w1/c1 is the normal Mach number before 
the shock. Along the X-axis, only the X-component of velocity is non-zero; so we 
can readily use normal shock relations. Since there are three relations and seven 
unknowns ( P ,  p and u before and after the shocklet and its speed), we obtain P I ,  P I ,  

u1 and P2 directly from the simulation data (PI  = 0.50288, p1 = 0.46504, U I  = 1.9144, 
P2 = 1.0118). The shocklet boundaries were taken as the locations where the velocity 
showed a sharp change, and the same grid point was used to read the values of all 
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FIGURE 7. (a) Schematic of the vortex dipole in n, in a moving reference frame to show the expected 
regions of compression and expansion. (b)  V * u  in n, at t = 0.1 for case E. Chain-dashed lines are 
o, contours. (c) M at t = 0.1 in ns for case E. The same wz contours as in (b)  are overlaid for 
reference. 
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101 = 0.05 
v * u = - 5  
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X 

E = 2.48 
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FIGURE 8. (a) Location of shocklet shown by overlaid plots of isosurfaces of 101 and V - u at t = 0.5 
for case E. Dashed lines are P contours in n, and l [ d .  (b )  Cross-section of V - u in 71,. (c) P contours 
in n,. ( d )  Kinetic energy dissipation ( E  = 2vD,,Dij) in n,. The o, contours are repeated in (M) for 
reference. (e) Kinetic energy dissipation in x d .  Overlaid contours of my clearly show the location of 
bridges. 
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FIGURE 9. Property variations across the shocklet, along the X-axis, at t = 0.5 for case E. (a) P ,  
(b)  p, (c) u, ( d )  M, (e) V - u ,  v) Entropy (=log (VIV, )  + ( l / y )  log (PIP , ) ;  where P, and V, are 
reference pressure and specific volume, respectively). 

other quantities. Using the Rankine-Hugoniot relations, we estimated p2 and u2 and 
the shocklet speed. Along the X-axis, the estimated p2 = 0.75874 and u2 = 1.2635 
are within 2% of the values observed (p2 = 0.75539, u2 = 1.2388) in the simulation 
(figure 9); the shocklet speed b is 0.23299. Other typical characteristics of a shocklet, 
such as high negative dilatation and an increase in entropy across the shock, with an 
entropy peak inside the shocklet due to reversible viscous work (Lee et al. 1991), are 
also seen in figure 9. The plots of V - I( and s show the Gibbs phenomenon near the 
shocklet, which is resolved with five grid points in the gradient region; the figures do 
not change (except for a more conspicuous Gibbs phenomenon) when the resolution 
in the X direction is halved. At lower M, the Gibbs phenomenon is absent from 
all curves. Even in the presence of the Gibbs phenomenon, the flow away from the 
shocklet is well resolved, and the total energy is conserved. 

A shock is usually idealized as a discontinuity; however, it in fact has a finite 
thickness owing to viscous effects. For weak shocks, i.e. Mlfl - 1 d 1, the shock 
thickness can be estimated as (Thompson 1984, p.364) 

where p' = p + 3c(v/4, p is molecular viscosity, c(v is bulk viscosity, and p1 and c1 
are density and the speed of sound, respectively, before the shock. For the observed 
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shocklet, Ml,=1.366, and we find that the distance between points 1 and 2 as defined 
in the previous paragraph is 4.3% higher than the value estimated using (7). Thus, 
a shocklet clearly has formed between the two vortices and can be resolved using 
global spectral methods. 

5.1.1. Shocklet locution 
Before discussing the effects of this shocklet on reconnection, we point out that 

the shocklet observed in our simulation is at a different location than that sug- 
gested by Heister et ul. (1990), based on an isentropic, inviscid analysis of a two- 
dimensional compressible dipole. These authors predicted that a shock would form 
in the compression regions near the rear stagnation point in figure 7(a), contrary 
to the shock observed in the compression region near the front stagnation point. 
This discrepancy is not likely to be due to three-dimensionality of reconnecting vor- 
tices, since the flow is approximately two-dimensional in and near n,. Also, the 
simulations of a two-dimensional dipole in n, discussed in 95.2.1 show a shocklet 
near the front stagnation point. Perhaps the discrepancy arises because Heister 
et al. used two point vortices with vacuum cores to construct the compressible 
vortex dipole and assumed isentropic flow. Moreover, the location of the shock 
was not ascertained from the P, p or the velocity divergence fields. Thus, further 
development of a compressible vortex dipole model at high A4 is needed, which 
should include a shock near the front stagnation point. It is interesting to note 
that when a supersonic jet is started, a vortex ring forms with a normal shock 
inside it (Baird 1987). The configuration in a meridional plane of the ring is sim- 
ilar to that in ns for our case. The Broadbent & Moore (1987) model of this 
phenomenon perhaps should be the starting point for further analysis of a two- 
dimensional dipole. 

5.1.2. Shocklet-induced baroclinic vorticity generation 

we consider the enstrophy equation 
To analyse the effect of the shocklet on early vortex reconnection dynamics ( r  < l) ,  

D( icu * 0 )  1 
= 0 - (0 * V ) U - 0  . o ( V . u )  + -0 - (VP x V V )  + p V 0  v20 

D t  - - rM,2 - 
I I I  - IV 

111 

- p 0  (VV x (V x 0))  + ;pw (VV x V(V * u ) ) .  (8) 
* M ,  Y 

V VI 

Among the four new terms (11, 111, V and VI) on the right-hand side due to 
compressibility, only I1 and I11 are found to be significant in the present simulations. 
The magnitude of all terms in (8) at the location of peak vorticity in ns at t = 0.2 
is listed in table 2. Term I1 is obviously large in the shocklet, which is the location 
of high negative dilatation. From this table, it is clear that the early peak vorticity 
increase is governed by term I1 in (8), and that the vortex stretching is an order of 
magnitude smaller than the dilatation term. Thus, the first peak seen in figure 6(a) 
is due solely to compressibility effects. Physically, the increase in vorticity because of 
dilatation is due to concentration of the same circulation in a smaller material region 
due to fluid compression (V - u < 0). This effect does .lot introduce new circulation, 
unlike baroclinic generation (see (9)). 

\ 
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Term in Case E 
eqn. (8) ( t  = 0.2) 

I 5.92219 
-11 95.46982 
111 -0.24047 
IV -61.5574 
-V -0.05876 
VI -0.096772 

Sum 39.439 

Case E 
(t  = 3.6) 
9.3987 

4.13056 
0.214088 
- 13.52274 
-0.0335 
-0.02895 

0.1582 

Case A 
( t  = 3.6) 
100.072 
-3.1714 
-0.76634 

-103.4628 
+0.09507 
0.002367 
-7.23 1 1 

TABLE 2. Enstrophy production terms at in n, 

Interestingly, term 111, which represents baroclinic vorticity generation, is also large 
near the shocklet. Initially, term I11 is identically zero as P cc py. At t = 0.5 (the 
time for figures 8 and 9), we show the three-dimensional isosurfaces of dilatation and 
JBTI = I(l/yM:)VP x VVI (the baroclinic source term 111) in figure 10(a). Since both 
quantities are large in the same spatial region, we show divergence on one side of 
nd and BT on the other. Cross-sections in ns and 711 for these terms are shown in 
figures 10(b) and 1O(c) respectively. In ns, BT is significant over the whole vortex core 
with alternate positive and negative regions. In the shocklet, BT is mostly positive, 
with an internal patch of intense negative B T .  This negative region occurs due to 
the non-uniformity of the shocklet strength; the shocklet is strongest away from Xd, 

inside the vortex core. 
In q, BT is concentrated in the shocklet and is positive in the quadrant shown. This 

represents the generation of positive wy by baroclinic effects, in the same direction as 
vorticity in the reconnected configuration in this quadrant (only the wy component is 
non-zero in 711). The dilatation V u is negative in both quadrants, which also causes 
an increase in wy by term I1 in (8). 

Flow behind a shocklet with non-uniform strength for an inviscid, steady flow 
is expected to be rotational due to baroclinic production of vorticity (Thompson 
1984, p.74). A precise description of the baroclinic production in the present viscous 
and unsteady flow, however, is difficult. Nevertheless, figure 10(a-c) clearly shows 
alteration of the dipole vorticity and early baroclinic generation of bridge vorticity 
due to the shocklet. 

5.1.3. Eflects of baroclinic vorticity 

of r through a surface bounded by a material curve C :  
To understand the effects of baroclinically generated vorticity, consider the evolution 

-VVP -dc+ (9) 
dT 
dt -A$: _ -  --- 

Term 1 Term 2 Term 3 

Term 1 is due to baroclinic production, term 3 is a viscous effect due to dilatation, 
and term 2 is the usual incompressible viscous diffusion term. Here, ns and nd are 
material planes because the normal velocity in these planes is zero, and periodicity in 
the X-direction implies that the same fluid remains in these planes. In figure It(a), 
since integrals along a - b and c - d in n, cancel due to periodicity and that along 
d - a is negligible since it is far removed, we can approximate the contour integral by 
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FIGURE 10. (a) Isosurfaces of V - u  and [ B T ~  = IVP x VVl( l/yMj) at t = 0.5 for case E. The baroclnic 
production is large in the same region as dilatation which represents the shocklet. (b) Cross-section 
of ( a )  in H,. Contour levels (min., max., increment) are: V u (-17.8, 2, 3) on the right-hand side, 
BT (-3.47, 3.4, 0.6) on the left-hand side. ( c )  Cross-section of (a )  in K d .  Contour levels are: V - u  
(-15, -2, 3) on the left-hand side, BT (0.866, 0.07, 0.07) on the right-hand side. 

that along b - c, i.e. 

The last approximation follows from the corresponding integration in nd and is also 
justified by the data in figure 5(b). The magnitudes of the three terms in (9) are listed 
in table 3 for various M at an early time (when the shocklet exists for case E as shown 
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FIGURE 11. (a) Sketch of contour integrals to calculate the circulation transfer rate in II, and n d .  

( b )  Sketch of possible topologies which satisfy (10). ( c )  Vector lines of (VP x VV)/yMz with an 
isosurface of IwI overlaid at t = 0.5 for case E. 

in the introduction to 05.1). At low M, dr,/dt is small, as expected. In case E, we 
note that dr,/dt has high contributions from both baroclinic and viscous effects. The 
increase in viscous effects with M is expected owing to the enhancement of vorticity 
gradients in n, by the shocklet (see figure 3). Thus, the shocklet is responsible for 
early circulation transfer through baroclinic vorticity generation in nd and baroclinic 
vorticity destruction in n,, in addition to circulation transfer by enhanced viscous 
cross-diff usion. 

Equation (10) implies that the changes in Ts and r d  are equal and opposite. 
Besides the cut-and-connect of an equal number of vortex lines, this is possible via 
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Re lo00 1000 loo0 1000 
A4 0.5 0.95 1.14 1.28 

Term in Case A Case B Case C Case D 
eqn (9) t=0.45 t=0.55 t=0.50 t=0.55 

1 -1.8 x -1.5 x lop3 -0.0245 -0.0628 
2 -3.3 x loT4 -1.3 x -0.0256 -0.0558 

Sum -5.3 x -3.1 x -0.0584 -0.1367 
dT/dt -5.9 x lop4 -3.2 x -0.0582 -0.1366 

Term in Case A Case B Case C Case D 

3 -1.9 10-5 -3.2 x 10-4 -8.3 x 10-3 -0.0181 

in figure 5(b)  

eqn (9) t = 3.59 t = 3.53 t = 3.68 t = 4.57 
1 -0.0032 -0.0143 -0.0179 -0.0145 
2 -0.6424 -0.5764 -0.4908 -0.4202 
3 -2.3 x 10-5 -2.3 x 10-4 -4.1 x 10-4 -4.5 x 10-4 

Sum -0.6456 -0.5909 -0.5091 -0.4352 
d r  /dt -0.7301 -0.6342 -0.5373 -0.4660 

in figure 5(b)  

TABLE 3. Circulation transfer terms in II, 

lo00 
1.45 

Case E 
t=0.53 

-0.0893 
-0.0838 
-0.0274 
-0.2005 
-0.2004 

Case E 
t = 4.49 
-0.0200 
-0.2906 

-5.8 x 10-4 
-0.3112 
-0.3204 

1500 
1.45 

Case G 
t=0.53 

-0.1295 
-0.0780 
-0.0259 
-0.2334 
-0.2320 

Case G 
t = 5.51 
-0.0292 
-0.28 19 

-7.3 x 10-4 
-0.3 1 18 
-0.3276 

formation of closed vortex lines. Note that the vortex lines which cross n, (or R d )  

must extend to infinity, be closed, or densely fill a compact region (figure l l b ) .  Only 
lines extending to infinity (i.e. reconnected or unreconnected lines) are possible in 
the incompressible case. Space-filling vortex lines cannot occur in our simulations 
owing to imposed symmetries. Closed vortex lines are impossible in incompressible 
antiparallel vortex reconnection because that would require two reconnections along 
a vortex line; incompressible vortex reconnection is possible only on the X-axis 
(i.e. at one point only). However, closed vortex lines representing a new topology 
are possible in a compressible antiparallel configuration; this is because baroclinic 
generation creates new vorticity and hence the topology change is, in principle, not 
restricted to cut-and-connect on the X-axis. 

Since it is not possible to isolate baroclinically generated vorticity from the total 
vorticity field in a given flow field, we plot the vector lines of the baroclinic source 
term (VP x V V )  for case E to determine the topology of the baroclinically generated 
vorticity. However, the baroclinic term is a rate of change of vorticity which represents 
vorticity only after time integration. Thus, the vector lines in figure ll(c) represent 
baroclinic vorticity integrated over a small time. We do find closed vector lines, 
which suggests the possibility of closed vortex lines when baroclinic production is the 
dominant effect. By comparing high-M cases (E and G in table 3), we see that as Re 
increases, the baroclinic term indeed contributes more to circulation transfer than the 
viscous term; presumably, Re is not high enough for closed vortex lines to appear. 

From (9), another important implication of baroclinic vorticity generation is that 
in compressible or stratified flows, reconnection can occur even in inviscid flows! But 
with the PIC used here, baroclinic generation is impossible without viscous terms as 
D(P V-Y)/Dt = 0 for inviscid flows. Therefore, the reconnection in our simulations is 
necessarily a viscous event. 

5.2. lnjuence of shock-induced bridging 
At early times ( t  c 2), mutual induction of the vortex dipole in n, reduces as M 
increases because of lower Ts and a stronger opposing flow induced by r d  due to 
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early, shocklet-induced bridging. As a consequence, growth of the initial sinusoidal 
perturbation of the vortex tubes at later times is reduced as M increases. We now show 
this quantitatively by considering the motion of the vorticity centroids in n, and nd. 

5.2.1. Centroid motion 
To model the effects of bridges and time-varying strain rate based on the curvature 

of the interacting vortex tubes, we analyse the motion of vorticity centroids in a, (xs, 
y , )  and in Zd (a& yd). Their evolution is shown in figure 12(a,b) for cases A and E. 
In n,, we note that x, for case E is smaller than that for case A until about t = 4.0, 
so that growth of the initial perturbation is lower for the high-M case. At very late 
times (t > 4) when T, has reduced considerably, we find that x, for case A actually 
lags that for case E owing to the much smaller rs in case A than case E. The y ,  
motion shows that owing to lower curvature (since growth of the initial perturbation 
is slower), self-induced motion towards nd is less in case E for all t > 0.1, as expected. 
Between t = 1.5 and 2.0 (for case A), r, remains almost constant with increasing x,. 
During this period, y ,  decreases faster owing to higher self-induced motion of the 
interacting vortices towards each other. 

In nd, we find that the bridges move along the X-axis at nearly the same rate for 
both cases (figure 12b). Owing to noise-level vorticity in 716 at early times, the bridge 
centroid was calculated only after the peak vorticity in nd was above 10% of the 
initial peak vorticity in n,. By this time, the bridges have moved away from n, in both 
cases, and thus we find that zd is much larger than zero. At first sight, the decrease 
in Zd between t = 1.5 and t = 4.0 in case E and the almost constant distance from n, 
between t = 2.0 and t = 3.0 for case A is surprising. To explain this, we note that 
there are two competing effects which determine zd: (i) drd/dt adds a,, near X=O 
thereby decreasing Zd,  and (ii) self-induced motion of the bridges, which increases 
zd. Thus, when effect (i) is dominant, the centroid moves closer to n,. For high M, 
the self-induced motion of the bridges away from n, is less since their curvature is 
small (see figure 2); i.e. effect (ii) is smaller than in case A. As a result, the final 
outward motion of the centroid in case E is delayed until there is sufficient r d  in the 
bridges to counter effect (i). But even after the outward motion of zd starts, effect 
(ii) is small so that the motion is slower than in case A. The small peaks in dT/dt 
are reflected as small fluctuations in zd motion for case E between t = 1 and 2.5 (see 
figure 5b). For case A, between t = 2.0 and t = 3.0, effects (i) and (ii) balance, and we 
observe almost constant zd. Thus, a model of compressible (as well as incompressible) 
vortex reconnection should account for both effects to accurately represent the bridge 
evolution, which is in turn crucial to successive reconnections. 

Reduction of mutual induction in n, As mentioned in the introduction to $5.2, there 
are two events which reduce X-direction vorticity centroid motion in 71,: (i) reduction 
of r,, and (ii) flow induced by the bridges. In order to assess which of these 
events is dominant and when, we compare motion of the dipole in n, with that of a 
two-dimensional dipole as follows. 

First, consider a two-dimensional dipole with the same vorticity distribution as 
in n, initially for the vortex reconnection simulations. The evolution of xs for this 
case is shown in figure 13(a). Note that the high-M case moves slower than the 
low-M case. This effect is due to higher circulation annihilation in the high-M case 
presumably by enhanced vorticity gradients and baroclinic production due to the 
shocklet (see figure 13b), as in vortex reconnection. When we place the two vortices 
much farther apart, the evolution of x, is the same for both high and low M (figure 
13c). Although circulation decay is still higher in the high-M case, the decrease in 
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FIGURE 12. (a) Location of vorticity centroid in ns. (b)  Location of vortidty centroid in n d .  0, 
denotes case A; and 0 ,  case E. The symbols are after every time increment (At)=0.5 until t = 6.0. 
For case A in (b)  the first time is 2.0. 

circulation is negligible (figure 13d). From this we conclude that compressibility effects 
can cause higher circulation annihilation, but for a given circulation, compressibility 
has a negligible effect on dipole propagation. 

The propagation of a dipole constructed with two point vortices in an isentropic, 
subsonic, inviscid flow (where circulation remains constant) has been studied by 
Moore & Pullin (1987). Using perturbation analysis, they show that the reduction in 
steady propagation velocity is proportional to M$ = 4;/&, where M,, 400 and c, 
are Mach number, dipole velocity and speed of sound. They attribute this reduction 
to differences in the shape of the vacuum region (with increasing M,) which exists 
in the point vortex model of a compressible dipole. For our case, M ,  is 0.12 and 0.3 
in cases A and E, respectively (with 4, estimated from xs evolution in figure 13a). 
Thus, the propagation reduction due to compressibility effects other than circulation 
annihilation (such as the shape of the vacuum region in the Moore & Pullin model) 
is very small in our case even though the flow in the dipole is supersonic. 
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RGURE 13. (a)  Motion of centroid in R, for case A (x), case E (o), and two-dimensional dipoles 
initially arranged the same as R, dipole in reconnection simulations: low M (o), high M (0 ). (b) 
Evolution of circulation for the cases in (a). (c) Motion of centroid of two-dimensional dipoles 
well separated initially: low M (o), high M (x). (d) Evolution of circulation for the cases in (c). 
(e) Evolution of B defined in (12). v) (AX,& (0 )  estimated and (Ax,& (0 ) observed differences 
in centroid locations for high- and low-M cases based on the two-dimensional model taking into 
account only the reduction in motion due to reduced circulation. 

Based on the above results, we neglect compressibility effects (other than those 
causing circulation reduction) which reduce the dipole propagation. Therefore, to 
estimate the effects of bridges, we consider the dipole motion in ns for cases A and E; 
the two cases have significantly different bridge evolutions, and their comparison helps 
to isolate the effects of bridges. Note that we do not compare compressibility effects 
here, i.e. this analysis could also have used, for instance, two incompressible cases 
at significantly different Re, where the bridges evolve on quite different timescales. 
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We consider only the change in n, dipole propagation due to reduction in r, (which 
includes both incompressible and compressible circulation-changing mechanisms) and 
the bridge-induced flow. The propagation velocity is expected to be proportional to 
Ts and inversely proportional to the distance between the dipole vorticity centroids. 
Therefore, we can write 

Mutual induction Reduction due to Reduction due to flow 
without annihilation + loss of rs + induced by bridges ' X S ( t )  = 

where Tsr are circulations in n, at t=O and t respectively, y, and z d  are the dipole 
radii in n, and Rd,  and A, B and C are constants. 

Clearly, C is zero in the two-dimensional dipole case. We can estimate B from the 
two-dimensional dipole motion with the same initial vorticity distribution as in ns for 
the vortex reconnection simulations (shown in figure 13a) from 

where A cancels and subscripts 1 and h denote low- and high-M cases. The estimate of 
B is shown in figure 13(e). B is not precisely constant because the vortex core deforms 
during evolution, while the above model is valid only for an inviscid point-vortex. 
However, B = 0.186 is representative of most of the evolution. For an inviscid, 
incompressible point vortex dipole B = 1/4n = 0.0795. 

It is difficult to estimate C in the same manner because z d  is not precisely defined 
when r d  is small, owing to noise-level vorticity. Since it is also difficult to measure 
A accurately, we use the above estimate of B to estimate the difference (AX,&(= 
xsr( t )  - x,h(t)) in x, between high- and low-M reconnection cases (this uses (12) with 
data for r and y, from the reconnection simulations, i.e. neglecting the third term 
in (11)) and compare with the actual values ((A,&x). Let 

Both (Axs& given by (12) and (AX,& are shown in figure 13(f). When the two 
values differ in figure 130 ,  the difference in the bridge-induced flow between cases A 
and E is important. D X  is large after t = 3.0. Until t = 2.0, Tst in case A is larger by 
10% (see figure 13a; virtually no bridging in case A), but D X  is nearly zero, implying 
that when bridges are weak, their effect can be neglected. After t = 3 bridging in 
case A is rapid and Tst is smaller than in case E (figure 13b) and DX increases. Since 
bridge circulation does not change significantly between 2 < t < 3 in case E, we can 
infer that the cause for increasing D X  is the stronger bridges in case A. For t > 3, 
r d  in both cases A and E increases, but the increase in case E is much slower and 
this is reflected by increasing JDXI in figure 130 .  Note, however, that this qualitative 
trend would be modified owing to the effect of the first term in (1 1) in increasing 
the propagation of the low-M dipole due to smaller y, (see figure 12a), which is not 
included in the estimate for figure 1 3 0 .  This term need not be included in the estimate 
of B via (12) since ys remains almost constant for the two-dimensional dipole. 
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P 

0.4 

FIGURE 14. P- and p-contours in 71, at t = 1.5 for case E. The lack of high gradient regions shows 
the absence of a shocklet. Chain-dashed lines are w, contours for reference. 

The motion of y, is affected by that of x, as follows. As x, increases, the 
curvature of the interacting vortices increases, acting to decrease y, faster owing 
to higher self-induced motion of the vortex tubes towards each other. This leads 
to higher annihilation of f,, thereby reducing the rate of increase of x,  and hence 
counteracting the rate of y, reduction. 

At the time when DX begins to increase in figure 13v), about 20% of f, has 
been transferred to nd. This analysis implies that the reconnection model of Saffman 
(1990), which neglects bridging, may hold only for early evolution when 80% of 
the circulation in n, remains unannihilated. After this time, the effects of bridges 
on the reduction of dipole propagation in n, should appear in Saffman’s model as a 
change in the strain rate responsible for dipole radius reduction and also as additional 
induced flow which causes vortex stretching in A,. Thus, by analysing the motion of 
x,, we are able to clearly show the need for including the effects of bridging in a 
vortex reconnection model and to demonstrate the bounds of validity for Saffman’s 
model. 

5.2.2. Shocklet diflusion 
By t = 1.5 the shocklet diffuses as shown by the lack of sharp gradients in the 

contours of P and p shown in figure 14 (compare with figure 8c). However, the 
flow is still locally supersonic in n,. The primary cause of the disappearance of the 
shocklet is viscous diffusion, which acts to smooth the large gradients in velocity, 
P and p. Therefore, at higher Re the shocklet would persist for a longer time. 
We cannot perform simulations at much higher Re since the shocklet thickness 
would then be inadequately resolved (shock thickness decreases with viscosity, (7)). 
However, a preliminary check of this argument was made by considering Re = 1500 
for doubled resolution in the X-direction. As expected, the shocklet was present for 
a slightly longer time as evidenced by the larger drop in f, at early times (see figure 
5a,b; case G). This of course raises the interesting possibility that Ts transfer due to a 
shocklet may be large enough at a significantly high Re so that complete compressible 
reconnection may occur on a much shorter timescale at high M (if based on a fixed 
extent o f f ,  transfer) than incompressible vortex reconnection. It is unclear how the 
bridge-induced flow will affect dynamics if the shocklet-induced f , transfer were to 
exceed 20% of initial T,. 

5.2.3. Reduced circulation transfer 
After the shocklet diffuses, the circulation transfer is primarily due to viscous 

cross-diffusion (as for incompressible vortex reconnection). This is clear from the 
magnitude of the circulation transfer terms at late times as shown in table 3. Viscous 
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cross-diffusion is directly proportional to the vorticity gradient, which in turn is 
determined by the motion of the vortex tubes towards 716. At high M, the self-induced 
motion of the vortex tubes toward nd is decreased (as explained in $5.2.1) so as to 
reduce vorticity gradients in x,. Thus, we observe that the circulation transfer rate 
has a lower peak (occurring at a later time) as M increases. 

5.2.4. Reduced vortex stretching 
As seen in figure 6(a), the peak vorticity in x, is smaller at higher M. This 

is of relevance not only to possible singularity of the compressible Navier-Stokes 
equations, but also to modelling of compressible vortex reconnection. To determine 
the primary reason for this reduction in peak vorticity, we show the distributions of 
enstrophy production terms in x, in figure 15 for cases A and E. Of the six terms 
on the right-hand side in (8), only the first four are significant. We observe that 
vortex stretching is more uniform over the cross-section in case E than case A. This 
is perhaps the reason for the lack of head-tail structure formation in case E. Values 
of all the terms at the location of aped in x, are given in table 2 at t = 3.6 for these 
cases. It is clear from this table that the reduction in peak vorticity is due to the 
considerably smaller (nearly a factor of 10) vortex stretching in the high-M case. 

Vortex stretching in x, is influenced by two effects: flow induced by the bridges and 
axial flow inside the vortex tube. Saffman’s (1990) model considers only the latter 
effect partially: the flow due to the pressure gradient generated by cancellation of 
vorticity in the contact zone is considered; but axial flow due to vortex line twisting 
(Melander & Hussain 19946) is neglected. For sufficiently high Re, the pressure 
drop across the cross-section of a rectilinear vortex is directly proportional to the 
square of axial circulation in that cross-section. Initially, the circulation is the same 
at all cross-sections, and thus there is no pressure gradient in the axial direction. 
At later instants, owing to transfer of r, to rd, the pressure drop across the cross- 
section is lower in x, (and xd) than for those parts of the vortex tube away from the 
interaction region. As a result, an axial pressure gradient is set up (figure 16a), which 
is proportional to the transferred circulation. At high M, the circulation transfer is 
reduced at late times owing to slower perturbation growth; thus the axial pressure 
gradient, and consequently, vortex stretching are smaller. We quantitatively show this 
by plotting the pressure gradient along the vortex line passing through the location 
of peak vorticity in x, for cases A and E in figure 16(b,c). Near 2 = 0, the maximum 
IVdP/dsl E IVVP - o/loll is higher in the high-M case at early times t = 0.1 and 
0.5, but is lower at late times t > 4. Since -VdP/ds appears as the pressure gradient 
term in the momentum equation for velocity along a vortex line, a negative value of 
VdP/ds implies induced flow away from R,. The velocity gradient du,/ds of this flow 
causes vortex stretching, where u, is the velocity along the vortex line. 

Vortex stretching in x, is also induced by bridges (see figure 17a). Since bridges are 
much weaker for case E at late times, the vortex stretching due to this effect is also 
lower and this leads to lower peak vorticity as M increases for a given Re. 

5.3. Compressibility effects in bridges 
To determine the compressibility effects in bridges inferred in $4.2, we consider the 
dominant terms in the enstrophy equation (8). In figure 17(b) we show the contours 
of the four dominant terms in xd. In case A, as observed by Melander & Hussain 
(1990), the vortex stretching term is negative over a part of the cross-section and has 
a large positive peak where the threads are closest to the bridges. The negative region 
is due to flow induced by the helical vortex lines. Compared to vortex stretching, 
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Case E 

Term I 

. \ - /  

Term IV 

F~GURE 15. Enstrophy production terms at t = 4.5 in x,. Contour levels (min., max.) with constant 
increment are: Case A: Term I (12.74, 127.45), Term I1 (-9.74, 10.66), Term 111 (-3.53, 2.27), Term 
IV (-134, 19.54). Chain-dashed lines are w, contours, negative contours levels are dashed lines and 
positive contour levels are solid lines. Case E: Term I (1.56, 15.6), Term I1 (-16.34, 8.95), Term 111 
(-3.47, 3.57), Term IV (-14.82, 2.2). 

the dilatation and baroclinic production terms are negligible in case A. In case E, 
the vortex stretching is higher than in case A, as expected from the stronger threads. 
In addition, the dilatation production is significant with a similar distribution, but 
reduces the peak vorticity. Thus, the local increase in 101 in ad in case E is less than 
in case A (see figure 6b), and the twisting of vortex lines in bridges is less, as is clear 
by comparing vortex lines in bridges in figure 17(d,e). In this figure, we have also 
overlaid parts of different levels of isovorticity surfaces to emphasize their differences 
with vortex surfaces. The vortex lines are generated by starting a rake at a contour 
of 10) in a, and the same contour in ad; thus, near a, and ad vortex surfaces and 
isovorticity surfaces are very similar, but farther away, vortex lines cross isovorticity 
surfaces. Even though isovorticity surfaces mimic the topology of vortex surfaces, they 
fail to reveal the detailed features: for example, formation of hairpin-like structures 
in region C (figure 17d), or threads not being connected to the vortex centre away 
from the reconnection zone. The hairpin-like structure in region C in case A is 
formed owing to motion of thread vortex lines due to the flow induced by much 
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FIGURE 16. (a) Sketch to illustrate the reason for axial flow due to change in circulation in x,. For 
a rectilinear vortex, the pressure drop is directly proportional to the square of the axial circulation. 
(h,  c) VdP/ds along the vortex line starting at the location of cop& in n,. ( b )  Case A and (c) case 
E. The symbols denote different times: 0, t = O.O;n ,  t = 0.1; 0, t = 0.5; X, t = 3.0; +, t = 3.6; A, 
t = 4.5; - o -, t = 6.0. 

stronger bridges. Unlike case A at late times, the bridges and threads in case E are 
of comparable strength, and thus, a hairpin-like structure does not form (figure 17e); 
the lack of hairpin formation is similar to case A at an earlier time (figure 17c). The 
twist of vortex lines in bridges (region A in figure 17c-e) leads to axial flow, as shown 
by a sketch in figure 4(b). 

Even though at late times compressible vortex reconnection occurs primarily 
through (incompressible) viscous cross-diffusion, compressibility effects cannot be 
neglected as they suppress core dynamics (axial flow due to vortex line twisting) in 
the bridges. 
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FIGURE 17 (a. b) .  For caption see next page. 

5.4. Efect of temperature-dependent p and K 

In most of our simulations, we assumed that p and K are constants, in order to 
economize computation (by about a factor of 4). However, we did run the highest-M 
case with p/po  = (T/To)0,76 and constant P r  in order to determine the effect of 
temperature dependent properties. The evolutions of r and peak vorticity in n, and 
ad are shown in figures 5(a,b) and 6(a,b) (compare cases E and F). The trends are 
similar in both the constant-property and the temperature-dependent-property runs. 
A slightly lower peak vorticity and a slightly higher circulation transfer are expected 
owing to a local increase in p in the contact zone when the shocklet exists. Thus, 
the results with temperature-dependent properties are similar to that for a constant- 
property case at a slightly lower Re. Note that this observation is not expected to 
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FIGURE 17. (a) Sketch to show flow induced by bridges which causes vortex stretching of threads, 
and flow induced by threads which causes vortex stretching of bridges. (b) Enstrophy production 
terms at t = 6.0 in xd. Contour levels (min., max.) with constant increment are: Case A: Term 
I(-11.39, 24.98), Term I1 (-0.051, 0.469), Term 111 (-0.06, 0.056), Term IV (-18.87, 3.57), Case 
E:  Term I (-2.27, 45.96), Term I1 (-0.12, 6.84), Term 111 (-0.448, 0.986), Term IV (-36.6, 4.9). 
(c-e) Vortex lines and isovorticity surfaces in the quadrant simulated, see figure l(b). (c) Vortex 
lines starting at 101=9.0 in x, and l [ d ,  and isovorticity surfaces for case A at t=4.5. (d) Vortex 
lines starting at lwl=4.0 in x, and nd, and isovorticity surfaces for case A at t=6.0. (e) Vortex lines 
starting at 10)=6.0 in x, and Ad, and isovorticity surfaces for case E at t=6.0. 
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hold in general, especially for flows with multiple regions of strong dilatation, which 
would lead to significant changes in temperature and corresponding changes in fluid 
properties. 

5.5.  Evolution of spectra 
In order to study the influence of compressibility at different lengthscales, we consider 
spectra of u, P and p. We use Helmholtz Pecomposition of,u = uc + u’, wjth uc 
such that V x uc = 0, V uc = V u, and u such that V x u = V x u, V u = 0. 
The energy spectra associated with uc, u’, and u are shown in figure 18(a). In the 
low-M case A at t = 0.5, we note that u‘ has Tuch less energy than d except at 
high wavenumbers (k = 30). The high energy in u at these wavenumbers is likely to 
be due to acoustic waves, since no shocklet is present and we also see corresponding 
peaks in the spectra of P and p shown in figure 18(b) at this time. Note that the 
energy associated with these acoustic waves is very small (of order lo-’). Thus, we 
can neglect the wave-vortex interactions as acoustic waves move across the adjacent 
domains due to periodic boundary conditions. At much later times ( t  = 4.5), most 
of the energy is associated with d at all wavenumbers, and between wavenumbers 5 
and 13 we see a -5/3 slope; however, we cannot make conclusive statements about 
the presence of an inertial range owing to the relatively few modes present. In case 
E at t = 0.5, we find that energy in uc is higher at all wavenumbers beyond 10. This 
is expected owing to the presence of a shocklet. At late times ( t  = 4.9, in case E 
the drop in kinetic energy is everywhere faster than k-5/3,  which suggests a higher 
energy dissipation compared to case A. This may be due to the additional dissipation 
involving dilatational velocity, which is particularly important when the shocklet is 
present (Lee et al. 1991). Also, the small-scale energy is higher at t = 4.5 than at 
t = 0.5, thereby indicating that vortex reconnection is in fact a cascade mechanism. 
The Re for the present simulations, however, is too low for comments to be made on 
the exponent of the energy spectrum at high M. 

6. Concluding remarks 
Vortex reconnection, a typical example of coherent structure interactions, is found 

to be significantly affected by compressibility. In particular, shocklet formation 
and the associated baroclinic vorticity production initiate reconnection (circulation 
transfer) at an early time, thereby altering the dynamics during the ‘inviscid advection 
phase’. Even though the circulation transfer at late times is predominantly due to 
viscous cross-diffusion for all M, the higher rd at early times which increases with 
M has a strong effect on the late-time dynamics. The rate of circulation transfer 
and peak vorticity are reduced at late times owing to stronger bridges at early 
times. This suggests that reconnection occurs over a longer timescale than in the 
incompressible case and that any possible finite-time singularity of vorticity (in n,) for 
the incompressible Navier-Stokes equations in the limit of infinite Reynolds number 
may be suppressed by compressibility effects. 

Compressibility effects also reduce the twisting of vortex lines in bridges at late 
times. Twisting of vortex lines is closely related to polarization of vortical struc- 
tures. Polarization is inferred by applying the helical wave decomposition (HWD), 
which decomposes a vector field (e.g. vorticity) into two parts based upon the 
eigenfunctions of the curl operator (Melander & Hussain 1993). Each of these parts 
has an axial flow associated with it; for instance, for a rectilinear vortex column, 
the right-handed part has axial vorticity (half the magnitude of the rectilinear 
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FIGURE 18 (a) .  For caption see facing page. 

vortex) and axial flow in the same directions, while the left-handed part has ax- 
ial vorticity (half the magnitude of the rectilinear vortex) and axial flow in the 
opposite directions - clearly, when these two polarized parts are superposed we 
obtain the original vortex with no axial flow. An alternative analysis of vortex 
reconnection based upon HWD is the subject of a separate study by us. Addi- 
tionally, if the initial vortex tubes are polarized, i.e. dominated by one component 
with non-zero axial flow, the evolutionary dynamics can be significantly different, 
as illustrated by Virk et al. (1994) for axisymmetric vortex rings. Such an axial 
flow is likely to occur in contrails of aircraft. Further, Melander & Hussain (1993) 
observe that organized turbulent structures are typically polarized. This suggests 
that reconnection of polarized vortex tubes may be more relevant to turbulence 
dynamics. 

An important issue common to both incompressible and compressible flows, which 
is beyond the scope of present work, is a precise definition of vortex reconnection. 
Such a definition is essential in order to assess the importance of reconnection in 
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FIGURE 18. (a) Velocity spectra: A, compressible velocity u' ; 0, solenoidal velocity u' ; 0, total u. 
The spectra for u' and u are indistinguishable when uc 4 u'. ( b )  Spectra of P (A) and p (0). 

turbulent flows. In general, the evolution of isovorticity surfaces is not an adequate 
diagnostic to determine vortex reconnection; this was clearly illustrated by Virk et al. 
(1994) for incompressible, axisymmetric flows with swirl. A definition of vortex 
reconnection has been suggested by Melander & Hussain (19944 in axisymmetric 
flows with swirl by using a local analysis analogous to that used for magnetic 
reconnection studies (Greene 1988). In Greene's approach, a flux-preserving velocity G 
is defined to track vortex lines in a viscous flow. Reconnection occurs at the locations 
where i3 is singular, such as at vorticity nulls or on a closed vortex line. Generalization 
of this approach into a method for identifying reconnection in fully three-dimensional 
flows is, however, still lacking. 

Kida & Takaoka (1991, 1994) have suggested a definition of the degree of re- 
connection as the magnitude of the term R = V ( V ~ W ) ~ ,  which is the component of 
the viscous term in the incompressible vorticity equation perpendicular to the local 
vorticity vector. Since o = 0 along the X-axis, (V2w)* is undefined on this axis. 
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Nevertheless, in n,$ and nd, w is non-zero, but R is still identically zero (inferred 
from inherent symmetries in the problem). Thus, this definition fails to show the 
reconnection occurring there. In addition, these authors provide an example (twisted 
vortex layer) where the topology of the vortex lines does not change at all, although 
R is non-zero, so that reconnection is incorrectly predicted by this definition. Further, 
being a point variable, R does not reflect the degree of reconnection. Finally, it 
is a subjective measure since the threshold value of R which indicates the occur- 
rence of reconnection is unknown a priori. Hence the relevance of this approach to 
reconnection remains unclear. 

The reason for the convective timescale of reconnection, a necessarily viscous 
interaction, requires further investigation. Ad hoc timescale definitions, based on the 
time for a reconnected line to move away from the interaction region (Saffman 1990) 
or the distance between the peak vorticity locations of interacting cores (Boratav et al. 
1992), are not meaningful in a general situation. For instance, both these definitions 
fail in the reconnection of antiparallel vortex tubes. We did not see any sharp drops 
in the distance between peak vorticity locations, which Boratav et al. have used to 
define a reconnection timescale. Also, the reconnected vortex lines continuously move 
away from the interaction region; note that implicit in this statement is the ability 
to track vortex lines in a viscous flow - as mentioned above, reconnection occurs 
precisely when this is not possible (Greene 1988)! 

Another aspect of the reconnection timescale which remains unresolved is its 
limit as Re -+ co and/or M -+ co. Our results clearly show that the reconnection 
timescale defined as the time to reach Ts = 0.5rS(t = 0) increases with M ;  but 
we cannot simulate a higher M with the present initial conditions since P and p 
become negative in the core. Based on Saffman’s model, Shelley et al. (1993) show 
analytically that this timescale in the incompressible case should increase as In(Re) ; 
however, their simulations in a limited range of Re first show a decrease and then 
a much slower increase in the timescale. They suggest that inadequate modelling 
of strain rates may be responsible for this discrepancy. Melander & Hussain (1990) 
have proposed to define the reconnection timescale as the time to reach the first local 
maximum of dr,/dt. This definition is based on the conceptual scenario that vortex 
reconnection occurs in bursts; at low Re (as in DNS), most rs is transferred in one 
burst. But as Re -, 00, the Ts transfer in each burst is infinitesimal. Based on a study 
of core dynamics, Melander & Hussain (1994b) predict that the duration of each 
burst reaches a finite limit, and this reconnection time decreases with increasing Re. 
Thus, we find that many fundamental issues regarding vortex reconnection remain 
controversial. 

The present study clearly demonstrates that compressibility can significantly alter 
vorticity dynamics, especially during reconnection. Therefore, additional studies 
of idealized vorticity configurations are needed to develop a better understanding 
of coherent structure interactions in compressible turbulent flows to permit their 
modelling and control. 
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